Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Generating Correctness Proofs with Neural Networks (1907.07794v4)

Published 17 Jul 2019 in cs.PL

Abstract: Foundational verification allows programmers to build software which has been empirically shown to have high levels of assurance in a variety of important domains. However, the cost of producing foundationally verified software remains prohibitively high for most projects,as it requires significant manual effort by highly trained experts. In this paper we present Proverbot9001,a proof search system using machine learning techniques to produce proofs of software correctness in interactive theorem provers. We demonstrate Proverbot9001 on the proof obligations from a large practical proof project,the CompCert verified C compiler,and show that it can effectively automate what were previously manual proofs,automatically producing proofs for 27.5% of theorem statements in our test dataset, when combined with solver-based tooling. Without any additional solvers,we exhibit a proof completion rate that is a 4X improvement over prior state-of-the-art machine learning models for generating proofs in Coq.

Citations (51)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.