Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Entropy Symmetrization and High-Order Accurate Entropy Stable Numerical Schemes for Relativistic MHD Equations (1907.07467v2)

Published 17 Jul 2019 in math.NA, astro-ph.IM, cs.NA, and physics.comp-ph

Abstract: This paper presents entropy symmetrization and high-order accurate entropy stable schemes for the relativistic magnetohydrodynamic (RMHD) equations. It is shown that the conservative RMHD equations are not symmetrizable and do not admit a thermodynamic entropy pair. To address this issue, a symmetrizable RMHD system, equipped with a convex thermodynamic entropy pair, is proposed by adding a source term into the equations, providing an analogue to the non-relativistic Godunov--Powell system. Arbitrarily high-order accurate entropy stable finite difference schemes are developed on Cartesian meshes based on the symmetrizable RMHD system. The crucial ingredients of these schemes include (i) affordable explicit entropy conservative fluxes which are technically derived through carefully selected parameter variables, (ii) a special high-order discretization of the source term in the symmetrizable RMHD system, and (iii) suitable high-order dissipative operators based on essentially non-oscillatory reconstruction to ensure the entropy stability. Several numerical tests demonstrate the accuracy and robustness of the proposed entropy stable schemes.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.