Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

$\texttt{DeepSqueeze}$: Decentralization Meets Error-Compensated Compression (1907.07346v2)

Published 17 Jul 2019 in cs.DC, cs.LG, and stat.ML

Abstract: Communication is a key bottleneck in distributed training. Recently, an \emph{error-compensated} compression technology was particularly designed for the \emph{centralized} learning and receives huge successes, by showing significant advantages over state-of-the-art compression based methods in saving the communication cost. Since the \emph{decentralized} training has been witnessed to be superior to the traditional \emph{centralized} training in the communication restricted scenario, therefore a natural question to ask is "how to apply the error-compensated technology to the decentralized learning to further reduce the communication cost." However, a trivial extension of compression based centralized training algorithms does not exist for the decentralized scenario. key difference between centralized and decentralized training makes this extension extremely non-trivial. In this paper, we propose an elegant algorithmic design to employ error-compensated stochastic gradient descent for the decentralized scenario, named $\texttt{DeepSqueeze}$. Both the theoretical analysis and the empirical study are provided to show the proposed $\texttt{DeepSqueeze}$ algorithm outperforms the existing compression based decentralized learning algorithms. To the best of our knowledge, this is the first time to apply the error-compensated compression to the decentralized learning.

Citations (48)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.