Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 130 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Deciphering Dynamical Nonlinearities in Short Time Series Using Recurrent Neural Networks (1907.07181v1)

Published 15 Jul 2019 in eess.SP, cs.LG, q-bio.QM, and stat.ML

Abstract: Surrogate testing techniques have been used widely to investigate the presence of dynamical nonlinearities, an essential ingredient of deterministic chaotic processes. Traditional surrogate testing subscribes to statistical hypothesis testing and investigates potential differences in discriminant statistics between the given empirical sample and its surrogate counterparts. The choice and estimation of the discriminant statistics can be challenging across short time series. Also, conclusion based on a single empirical sample is an inherent limitation. The present study proposes a recurrent neural network classification framework that uses the raw time series obviating the need for discriminant statistic while accommodating multiple time series realizations for enhanced generalizability of the findings. The results are demonstrated on short time series with lengths (L = 32, 64, 128) from continuous and discrete dynamical systems in chaotic regimes, nonlinear transform of linearly correlated noise and experimental data. Accuracy of the classifier is shown to be markedly higher than >> 50% for the processes in chaotic regimes whereas those of nonlinearly correlated noise were around ~50% similar to that of random guess from a one-sample binomial test. These results are promising and elucidate the usefulness of the proposed framework in identifying potential dynamical nonlinearities from short experimental time series.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.