Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Latent Adversarial Defence with Boundary-guided Generation (1907.07001v1)

Published 16 Jul 2019 in cs.LG and cs.CR

Abstract: Deep Neural Networks (DNNs) have recently achieved great success in many tasks, which encourages DNNs to be widely used as a machine learning service in model sharing scenarios. However, attackers can easily generate adversarial examples with a small perturbation to fool the DNN models to predict wrong labels. To improve the robustness of shared DNN models against adversarial attacks, we propose a novel method called Latent Adversarial Defence (LAD). The proposed LAD method improves the robustness of a DNN model through adversarial training on generated adversarial examples. Different from popular attack methods which are carried in the input space and only generate adversarial examples of repeating patterns, LAD generates myriad of adversarial examples through adding perturbations to latent features along the normal of the decision boundary which is constructed by an SVM with an attention mechanism. Once adversarial examples are generated, we adversarially train the model through augmenting the training data with generated adversarial examples. Extensive experiments on the MNIST, SVHN, and CelebA dataset demonstrate the effectiveness of our model in defending against different types of adversarial attacks.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.