Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Latent Adversarial Defence with Boundary-guided Generation (1907.07001v1)

Published 16 Jul 2019 in cs.LG and cs.CR

Abstract: Deep Neural Networks (DNNs) have recently achieved great success in many tasks, which encourages DNNs to be widely used as a machine learning service in model sharing scenarios. However, attackers can easily generate adversarial examples with a small perturbation to fool the DNN models to predict wrong labels. To improve the robustness of shared DNN models against adversarial attacks, we propose a novel method called Latent Adversarial Defence (LAD). The proposed LAD method improves the robustness of a DNN model through adversarial training on generated adversarial examples. Different from popular attack methods which are carried in the input space and only generate adversarial examples of repeating patterns, LAD generates myriad of adversarial examples through adding perturbations to latent features along the normal of the decision boundary which is constructed by an SVM with an attention mechanism. Once adversarial examples are generated, we adversarially train the model through augmenting the training data with generated adversarial examples. Extensive experiments on the MNIST, SVHN, and CelebA dataset demonstrate the effectiveness of our model in defending against different types of adversarial attacks.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube