Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Efficient Autonomy Validation in Simulation with Adaptive Stress Testing (1907.06795v1)

Published 16 Jul 2019 in cs.LG, cs.RO, cs.SE, cs.SY, eess.SY, and stat.ML

Abstract: During the development of autonomous systems such as driverless cars, it is important to characterize the scenarios that are most likely to result in failure. Adaptive Stress Testing (AST) provides a way to search for the most-likely failure scenario as a Markov decision process (MDP). Our previous work used a deep reinforcement learning (DRL) solver to identify likely failure scenarios. However, the solver's use of a feed-forward neural network with a discretized space of possible initial conditions poses two major problems. First, the system is not treated as a black box, in that it requires analyzing the internal state of the system, which leads to considerable implementation complexities. Second, in order to simulate realistic settings, a new instance of the solver needs to be run for each initial condition. Running a new solver for each initial condition not only significantly increases the computational complexity, but also disregards the underlying relationship between similar initial conditions. We provide a solution to both problems by employing a recurrent neural network that takes a set of initial conditions from a continuous space as input. This approach enables robust and efficient detection of failures because the solution generalizes across the entire space of initial conditions. By simulating an instance where an autonomous car drives while a pedestrian is crossing a road, we demonstrate the solver is now capable of finding solutions for problems that would have previously been intractable.

Citations (45)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.