Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Partitioning Graphs for the Cloud using Reinforcement Learning (1907.06768v2)

Published 15 Jul 2019 in cs.DC

Abstract: In this paper, we propose Revolver, a parallel graph partitioning algorithm capable of partitioning large-scale graphs on a single shared-memory machine. Revolver employs an asynchronous processing framework, which leverages reinforcement learning and label propagation to adaptively partition a graph. In addition, it adopts a vertex-centric view of the graph where each vertex is assigned an autonomous agent responsible for selecting a suitable partition for it, distributing thereby the computation across all vertices. The intuition behind using a vertex-centric view is that it naturally fits the graph partitioning problem, which entails that a graph can be partitioned using local information provided by each vertex's neighborhood. We fully implemented and comprehensively tested Revolver using nine real-world graphs. Our results show that Revolver is scalable and can outperform three popular and state-of-the-art graph partitioners via producing comparable localized partitions, yet without sacrificing the load balance across partitions.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.