Papers
Topics
Authors
Recent
Search
2000 character limit reached

Sampling-based Motion Planning via Control Barrier Functions

Published 15 Jul 2019 in cs.RO | (1907.06722v1)

Abstract: Robot motion planning is central to real-world autonomous applications, such as self-driving cars, persistence surveillance, and robotic arm manipulation. One challenge in motion planning is generating control signals for nonlinear systems that result in obstacle free paths through dynamic environments. In this paper, we propose Control Barrier Function guided Rapidly-exploring Random Trees (CBF-RRT), a sampling-based motion planning algorithm for continuous-time nonlinear systems in dynamic environments. The algorithm focuses on two objectives: efficiently generating feasible controls that steer the system toward a goal region, and handling environments with dynamical obstacles in continuous time. We formulate the control synthesis problem as a Quadratic Program (QP) that enforces Control Barrier Function (CBF) constraints to achieve obstacle avoidance. Additionally, CBF-RRT does not require nearest neighbor or collision checks when sampling, which greatly reduce the run-time overhead when compared to standard RRT variants.

Citations (33)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.