Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Agglomerative Attention (1907.06607v1)

Published 15 Jul 2019 in cs.LG and stat.ML

Abstract: Neural networks using transformer-based architectures have recently demonstrated great power and flexibility in modeling sequences of many types. One of the core components of transformer networks is the attention layer, which allows contextual information to be exchanged among sequence elements. While many of the prevalent network structures thus far have utilized full attention -- which operates on all pairs of sequence elements -- the quadratic scaling of this attention mechanism significantly constrains the size of models that can be trained. In this work, we present an attention model that has only linear requirements in memory and computation time. We show that, despite the simpler attention model, networks using this attention mechanism can attain comparable performance to full attention networks on LLMing tasks.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)