Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Joint Language Identification of Code-Switching Speech using Attention based E2E Network (1907.06342v1)

Published 15 Jul 2019 in cs.CL, cs.SD, and eess.AS

Abstract: Language identification (LID) has relevance in many speech processing applications. For the automatic recognition of code-switching speech, the conventional approaches often employ an LID system for detecting the languages present within an utterance. In the existing works, the LID on code-switching speech involves modelling of the underlying languages separately. In this work, we propose a joint modelling based LID system for code-switching speech. To achieve the same, an attention-based end-to-end (E2E) network has been explored. For the development and evaluation of the proposed approach, a recently created Hindi-English code-switching corpus has been used. For the contrast purpose, an LID system employing the connectionist temporal classification-based E2E network is also developed. On comparing both the LID systems, the attention based approach is noted to result in better LID accuracy. The effective location of code-switching boundaries within the utterance by the proposed approach has been demonstrated by plotting the attention weights of E2E network.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.