Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Controlling Model Complexity in Probabilistic Model-Based Dynamic Optimization of Neural Network Structures (1907.06341v1)

Published 15 Jul 2019 in cs.NE, cs.LG, and stat.ML

Abstract: A method of simultaneously optimizing both the structure of neural networks and the connection weights in a single training loop can reduce the enormous computational cost of neural architecture search. We focus on the probabilistic model-based dynamic neural network structure optimization that considers the probability distribution of structure parameters and simultaneously optimizes both the distribution parameters and connection weights based on gradient methods. Since the existing algorithm searches for the structures that only minimize the training loss, this method might find overly complicated structures. In this paper, we propose the introduction of a penalty term to control the model complexity of obtained structures. We formulate a penalty term using the number of weights or units and derive its analytical natural gradient. The proposed method minimizes the objective function injected the penalty term based on the stochastic gradient descent. We apply the proposed method in the unit selection of a fully-connected neural network and the connection selection of a convolutional neural network. The experimental results show that the proposed method can control model complexity while maintaining performance.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.