Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FMRI data augmentation via synthesis (1907.06134v1)

Published 13 Jul 2019 in cs.CV, cs.LG, and eess.IV

Abstract: We present an empirical evaluation of fMRI data augmentation via synthesis. For synthesis we use generative mod-els trained on real neuroimaging data to produce novel task-dependent functional brain images. Analyzed generative mod-els include classic approaches such as the Gaussian mixture model (GMM), and modern implicit generative models such as the generative adversarial network (GAN) and the variational auto-encoder (VAE). In particular, the proposed GAN and VAE models utilize 3-dimensional convolutions, which enables modeling of high-dimensional brain image tensors with structured spatial correlations. The synthesized datasets are then used to augment classifiers designed to predict cognitive and behavioural outcomes. Our results suggest that the proposed models are able to generate high-quality synthetic brain images which are diverse and task-dependent. Perhaps most importantly, the performance improvements of data aug-mentation via synthesis are shown to be complementary to the choice of the predictive model. Thus, our results suggest that data augmentation via synthesis is a promising approach to address the limited availability of fMRI data, and to improve the quality of predictive fMRI models.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Peiye Zhuang (19 papers)
  2. Alexander G. Schwing (62 papers)
  3. Sanmi Koyejo (111 papers)
Citations (38)

Summary

We haven't generated a summary for this paper yet.