Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A semi-Lagrangian discontinuous Galerkin (DG) -- local DG method for solving convection-diffusion equations (1907.06117v2)

Published 13 Jul 2019 in math.NA and cs.NA

Abstract: In this paper, we propose an efficient high order semi-Lagrangian (SL) discontinuous Galerkin (DG) method for solving linear convection-diffusion equations. The method generalizes our previous work on developing the SLDG method for transport equations (J. Sci. Comput. 73: 514-542, 2017), making it capable of handling additional diffusion and source terms. Within the DG framework, the solution is evolved along the characteristics; while the diffusion term is discretized by the local DG (LDG) method and integrated along characteristics by implicit Runge-Kutta methods together with source terms. The proposed method is named the `SLDG-LDG' method and enjoys many attractive features of the DG and SL methods. These include the uniformly high order accuracy (e.g. third order) in space and in time, compact, mass conservative, and stability under large time stepping size. An $L2$ stability analysis is provided when the method is coupled with the first order backward Euler discretization. Effectiveness of the method are demonstrated by a group of numerical tests in one and two dimensions.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.