Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Changing Views: Persuasion Modeling and Argument Extraction from Online Discussions (1907.06076v1)

Published 13 Jul 2019 in cs.SI

Abstract: Persuasion and argumentation are possibly among the most complex examples of the interplay between multiple human subjects. With the advent of the Internet, online forums provide wide platforms for people to share their opinions and reasonings around various diverse topics. In this work, we attempt to model persuasive interaction between users on Reddit, a popular online discussion forum. We propose a deep LSTM model to classify whether a conversation leads to a successful persuasion or not, and use this model to predict whether a certain chain of arguments can lead to persuasion. While learning persuasion dynamics, our model tends to identify argument facets implicitly, using an attention mechanism. We also propose a semi-supervised approach to extract argumentative components from discussion threads. Both these models provide useful insight into how people engage in argumentation on online discussion forums.

Citations (35)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.