Papers
Topics
Authors
Recent
2000 character limit reached

The Use of Gaussian Processes in System Identification (1907.06066v1)

Published 13 Jul 2019 in stat.ML, cs.LG, cs.SY, and eess.SY

Abstract: Gaussian processes are used in machine learning to learn input-output mappings from observed data. Gaussian process regression is based on imposing a Gaussian process prior on the unknown regressor function and statistically conditioning it on the observed data. In system identification, Gaussian processes are used to form time series prediction models such as non-linear finite-impulse response (NFIR) models as well as non-linear autoregressive (NARX) models. Gaussian process state-space models (GPSS) can be used to learn the dynamic and measurement models for a state-space representation of the input-output data. Temporal and spatio-temporal Gaussian processes can be directly used to form regressor on the data in the time domain. The aim of this article is to briefly outline the main directions in system identification methods using Gaussian processes.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.