Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Vector Quantized Bayesian Neural Network Inference for Data Streams (1907.05911v3)

Published 12 Jul 2019 in cs.LG, cs.CV, and stat.ML

Abstract: Bayesian neural networks (BNN) can estimate the uncertainty in predictions, as opposed to non-Bayesian neural networks (NNs). However, BNNs have been far less widely used than non-Bayesian NNs in practice since they need iterative NN executions to predict a result for one data, and it gives rise to prohibitive computational cost. This computational burden is a critical problem when processing data streams with low-latency. To address this problem, we propose a novel model VQ-BNN, which approximates BNN inference for data streams. In order to reduce the computational burden, VQ-BNN inference predicts NN only once and compensates the result with previously memorized predictions. To be specific, VQ-BNN inference for data streams is given by temporal exponential smoothing of recent predictions. The computational cost of this model is almost the same as that of non-Bayesian NNs. Experiments including semantic segmentation on real-world data show that this model performs significantly faster than BNNs while estimating predictive results comparable to or superior to the results of BNNs.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube