Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Structured inversion of the Bernstein mass matrix (1907.05773v1)

Published 12 Jul 2019 in math.NA and cs.NA

Abstract: Bernstein polynomials, long a staple of approximation theory and computational geometry, have also increasingly become of interest in finite element methods. Many fundamental problems in interpolation and approximation give rise to interesting linear algebra questions. Previously, we gave block-structured algorithms for inverting the Bernstein mass matrix on simplicial cells, but did not study fast alorithms for the univariate case. Here, we give several approaches to inverting the univariate mass matrix based on exact formulae for the inverse; decompositions of the inverse in terms of Hankel, Toeplitz, and diagonal matrices; and a spectral decomposition. In particular, the eigendecomposition can be explicitly constructed in $\mathcal{O}(n2)$ operations, while its accuracy for solving linear systems is comparable to that of the Cholesky decomposition. Moreover, we study conditioning and accuracy of these methods from the standpoint of the effect of roundoff error in the $L2$ norm on polynomials, showing that the conditioning in this case is far less extreme than in the standard 2-norm.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube