Papers
Topics
Authors
Recent
2000 character limit reached

Boosting Scene Character Recognition by Learning Canonical Forms of Glyphs (1907.05577v2)

Published 12 Jul 2019 in cs.CV

Abstract: As one of the fundamental problems in document analysis, scene character recognition has attracted considerable interests in recent years. But the problem is still considered to be extremely challenging due to many uncontrollable factors including glyph transformation, blur, noisy background, uneven illumination, etc. In this paper, we propose a novel methodology for boosting scene character recognition by learning canonical forms of glyphs, based on the fact that characters appearing in scene images are all derived from their corresponding canonical forms. Our key observation is that more discriminative features can be learned by solving specially-designed generative tasks compared to traditional classification-based feature learning frameworks. Specifically, we design a GAN-based model to make the learned deep feature of a given scene character be capable of reconstructing corresponding glyphs in a number of standard font styles. In this manner, we obtain deep features for scene characters that are more discriminative in recognition and less sensitive against the above-mentioned factors. Our experiments conducted on several publicly-available databases demonstrate the superiority of our method compared to the state of the art.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.