Papers
Topics
Authors
Recent
2000 character limit reached

Collaborative Multi-Agent Dialogue Model Training Via Reinforcement Learning (1907.05507v2)

Published 11 Jul 2019 in cs.HC and cs.CL

Abstract: We present the first complete attempt at concurrently training conversational agents that communicate only via self-generated language. Using DSTC2 as seed data, we trained natural language understanding (NLU) and generation (NLG) networks for each agent and let the agents interact online. We model the interaction as a stochastic collaborative game where each agent (player) has a role ("assistant", "tourist", "eater", etc.) and their own objectives, and can only interact via natural language they generate. Each agent, therefore, needs to learn to operate optimally in an environment with multiple sources of uncertainty (its own NLU and NLG, the other agent's NLU, Policy, and NLG). In our evaluation, we show that the stochastic-game agents outperform deep learning based supervised baselines.

Citations (32)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com