Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Grounding Value Alignment with Ethical Principles (1907.05447v1)

Published 11 Jul 2019 in cs.AI, cs.CY, and cs.LG

Abstract: An important step in the development of value alignment (VA) systems in AI is understanding how values can interrelate with facts. Designers of future VA systems will need to utilize a hybrid approach in which ethical reasoning and empirical observation interrelate successfully in machine behavior. In this article we identify two problems about this interrelation that have been overlooked by AI discussants and designers. The first problem is that many AI designers commit inadvertently a version of what has been called by moral philosophers the "naturalistic fallacy," that is, they attempt to derive an "ought" from an "is." We illustrate when and why this occurs. The second problem is that AI designers adopt training routines that fail fully to simulate human ethical reasoning in the integration of ethical principles and facts. Using concepts of quantified modal logic, we proceed to offer an approach that promises to simulate ethical reasoning in humans by connecting ethical principles on the one hand and propositions about states of affairs on the other.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.