Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Structure Exploiting Interior Point Methods (1907.05420v1)

Published 11 Jul 2019 in math.OC and cs.DC

Abstract: Interior point methods are among the most popular techniques for large scale nonlinear optimization, owing to their intrinsic ability of scaling to arbitrary large problem sizes. Their efficiency has attracted in recent years a lot of attention due to increasing demand for large scale optimization in industry and engineering. A parallel interior point method is discussed that exploits the intrinsic structure of large-scale nonlinear optimization problems so that the solution process can employ massively parallel high-performance computing infastructures. Since the overall performance of interior point methods relies heavily on scalable sparse linear algebra solvers, particular emphasis is given to the underlying algorithms for the distributed solution of the associated sparse linear systems obtained at each iteration from the linearization of the optimality conditions. The interior point algorithm is implemented in a object-oriented parallel IPM solver and applied for the solution of large scale optimal control problems solved in a daily basis for the secure transmission and distribution of electricity in modern power grids.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.