Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Edge Heuristic GAN for Non-uniform Blind Deblurring (1907.05185v1)

Published 11 Jul 2019 in eess.IV and cs.CV

Abstract: Non-uniform blur, mainly caused by camera shake and motions of multiple objects, is one of the most common causes of image quality degradation. However, the traditional blind deblurring methods based on blur kernel estimation do not perform well on complicated non-uniform motion blurs. Recent studies show that GAN-based approaches achieve impressive performance on deblurring tasks. In this letter, to further improve the performance of GAN-based methods on deblurring tasks, we propose an edge heuristic multi-scale generative adversarial network(GAN), which uses the "coarse-to-fine" scheme to restore clear images in an end-to-end manner. In particular, an edge-enhanced network is designed to generate sharp edges as auxiliary information to guide the deblurring process. Furthermore, We propose a hierarchical content loss function for deblurring tasks. Extensive experiments on different datasets show that our method achieves state-of-the-art performance in dynamic scene deblurring.

Citations (31)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.