Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Conditional Analysis for Key-Value Data with Local Differential Privacy (1907.05014v1)

Published 11 Jul 2019 in cs.CR and cs.DB

Abstract: Local differential privacy (LDP) has been deemed as the de facto measure for privacy-preserving distributed data collection and analysis. Recently, researchers have extended LDP to the basic data type in NoSQL systems: the key-value data, and show its feasibilities in mean estimation and frequency estimation. In this paper, we develop a set of new perturbation mechanisms for key-value data collection and analysis under the strong model of local differential privacy. Since many modern machine learning tasks rely on the availability of conditional probability or the marginal statistics, we then propose the conditional frequency estimation method for key analysis and the conditional mean estimation for value analysis in key-value data. The released statistics with conditions can further be used in learning tasks. Extensive experiments of frequency and mean estimation on both synthetic and real-world datasets validate the effectiveness and accuracy of the proposed key-value perturbation mechanisms against the state-of-art competitors.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.