The SAT+CAS Method for Combinatorial Search with Applications to Best Matrices (1907.04987v2)
Abstract: In this paper, we provide an overview of the SAT+CAS method that combines satisfiability checkers (SAT solvers) and computer algebra systems (CAS) to resolve combinatorial conjectures, and present new results vis-`a-vis best matrices. The SAT+CAS method is a variant of the Davis$\unicode{8211}$Putnam$\unicode{8211}$Logemann$\unicode{8211}$Loveland $\operatorname{DPLL}(T)$ architecture, where the $T$ solver is replaced by a CAS. We describe how the SAT+CAS method has been previously used to resolve many open problems from graph theory, combinatorial design theory, and number theory, showing that the method has broad applications across a variety of fields. Additionally, we apply the method to construct the largest best matrices yet known and present new skew Hadamard matrices constructed from best matrices. We show the best matrix conjecture (that best matrices exist in all orders of the form $r2+r+1$) which was previously known to hold for $r\leq6$ also holds for $r=7$. We also confirmed the results of the exhaustive searches that have been previously completed for $r\leq6$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.