Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Multichannel Loss Function for Supervised Speech Source Separation by Mask-based Beamforming (1907.04984v1)

Published 11 Jul 2019 in cs.SD and eess.AS

Abstract: In this paper, we propose two mask-based beamforming methods using a deep neural network (DNN) trained by multichannel loss functions. Beamforming technique using time-frequency (TF)-masks estimated by a DNN have been applied to many applications where TF-masks are used for estimating spatial covariance matrices. To train a DNN for mask-based beamforming, loss functions designed for monaural speech enhancement/separation have been employed. Although such a training criterion is simple, it does not directly correspond to the performance of mask-based beamforming. To overcome this problem, we use multichannel loss functions which evaluate the estimated spatial covariance matrices based on the multichannel Itakura--Saito divergence. DNNs trained by the multichannel loss functions can be applied to construct several beamformers. Experimental results confirmed their effectiveness and robustness to microphone configurations.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.