Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 78 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Lexicase selection in Learning Classifier Systems (1907.04736v1)

Published 10 Jul 2019 in cs.NE

Abstract: The lexicase parent selection method selects parents by considering performance on individual data points in random order instead of using a fitness function based on an aggregated data accuracy. While the method has demonstrated promise in genetic programming and more recently in genetic algorithms, its applications in other forms of evolutionary machine learning have not been explored. In this paper, we investigate the use of lexicase parent selection in Learning Classifier Systems (LCS) and study its effect on classification problems in a supervised setting. We further introduce a new variant of lexicase selection, called batch-lexicase selection, which allows for the tuning of selection pressure. We compare the two lexicase selection methods with tournament and fitness proportionate selection methods on binary classification problems. We show that batch-lexicase selection results in the creation of more generic rules which is favorable for generalization on future data. We further show that batch-lexicase selection results in better generalization in situations of partial or missing data.

Citations (41)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube