Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Label-Aware Graph Convolutional Networks (1907.04707v2)

Published 10 Jul 2019 in cs.LG and stat.ML

Abstract: Recent advances in Graph Convolutional Networks (GCNs) have led to state-of-the-art performance on various graph-related tasks. However, most existing GCN models do not explicitly identify whether all the aggregated neighbors are valuable to the learning tasks, which may harm the learning performance. In this paper, we consider the problem of node classification and propose the Label-Aware Graph Convolutional Network (LAGCN) framework which can directly identify valuable neighbors to enhance the performance of existing GCN models. Our contribution is three-fold. First, we propose a label-aware edge classifier that can filter distracting neighbors and add valuable neighbors for each node to refine the original graph into a label-aware~(LA) graph. Existing GCN models can directly learn from the LA graph to improve the performance without changing their model architectures. Second, we introduce the concept of positive ratio to evaluate the density of valuable neighbors in the LA graph. Theoretical analysis reveals that using the edge classifier to increase the positive ratio can improve the learning performance of existing GCN models. Third, we conduct extensive node classification experiments on benchmark datasets. The results verify that LAGCN can improve the performance of existing GCN models considerably, in terms of node classification.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.