Emergent Mind

Abstract

In the Maximum Independent Set problem we are asked to find a set of pairwise nonadjacent vertices in a given graph with the maximum possible cardinality. In general graphs, this classical problem is known to be NP-hard and hard to approximate within a factor of $n{1-\varepsilon}$ for any $\varepsilon > 0$. Due to this, investigating the complexity of Maximum Independent Set in various graph classes in hope of finding better tractability results is an active research direction. In $H$-free graphs, that is, graphs not containing a fixed graph $H$ as an induced subgraph, the problem is known to remain NP-hard and APX-hard whenever $H$ contains a cycle, a vertex of degree at least four, or two vertices of degree at least three in one connected component. For the remaining cases, where every component of $H$ is a path or a subdivided claw, the complexity of Maximum Independent Set remains widely open, with only a handful of polynomial-time solvability results for small graphs $H$ such as $P5$, $P6$, the claw, or the fork. We show that for every graph $H$ for which Maximum Independent Set is not known to be APX-hard and SUBEXP-hard in $H$-free graphs, the problem admits a quasi-polynomial time approximation scheme and a subexponential-time exact algorithm in this graph class. Our algorithm works also in the more general weighted setting, where the input graph is supplied with a weight function on vertices and we are maximizing the total weight of an independent set.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.