Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Improved Structural Methods for Nonlinear Differential-Algebraic Equations via Combinatorial Relaxation (1907.04511v1)

Published 10 Jul 2019 in cs.SC, cs.NA, math.NA, and math.OC

Abstract: Differential-algebraic equations (DAEs) are widely used for modeling of dynamical systems. In numerical analysis of DAEs, consistent initialization and index reduction are important preprocessing prior to numerical integration. Existing DAE solvers commonly adopt structural preprocessing methods based on combinatorial optimization. Unfortunately, the structural methods fail if the DAE has numerical or symbolic cancellations. For such DAEs, methods have been proposed to modify them to other DAEs to which the structural methods are applicable, based on the combinatorial relaxation technique. Existing modification methods, however, work only for a class of DAEs that are linear or close to linear. This paper presents two new modification methods for nonlinear DAEs: the substitution method and the augmentation method. Both methods are based on the combinatorial relaxation approach and are applicable to a large class of nonlinear DAEs. The substitution method symbolically solves equations for some derivatives based on the implicit function theorem and substitutes the solution back into the system. Instead of solving equations, the augmentation method modifies DAEs by appending new variables and equations. The augmentation method has advantages that the equation solving is not needed and the sparsity of DAEs is retained. It is shown in numerical experiments that both methods, especially the augmentation method, successfully modify high-index DAEs that the DAE solver in MATLAB cannot handle.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)