Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

SNAP: Finding Approximate Second-Order Stationary Solutions Efficiently for Non-convex Linearly Constrained Problems (1907.04450v1)

Published 9 Jul 2019 in math.OC, cs.CC, and stat.ML

Abstract: This paper proposes low-complexity algorithms for finding approximate second-order stationary points (SOSPs) of problems with smooth non-convex objective and linear constraints. While finding (approximate) SOSPs is computationally intractable, we first show that generic instances of the problem can be solved efficiently. More specifically, for a generic problem instance, certain strict complementarity (SC) condition holds for all Karush-Kuhn-Tucker (KKT) solutions (with probability one). The SC condition is then used to establish an equivalence relationship between two different notions of SOSPs, one of which is computationally easy to verify. Based on this particular notion of SOSP, we design an algorithm named the Successive Negative-curvature grAdient Projection (SNAP), which successively performs either conventional gradient projection or some negative curvature based projection steps to find SOSPs. SNAP and its first-order extension SNAP$+$, require $\mathcal{O}(1/\epsilon{2.5})$ iterations to compute an $(\epsilon, \sqrt{\epsilon})$-SOSP, and their per-iteration computational complexities are polynomial in the number of constraints and problem dimension. To our knowledge, this is the first time that first-order algorithms with polynomial per-iteration complexity and global sublinear rate have been designed to find SOSPs of the important class of non-convex problems with linear constraints.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube