Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Nearly optimal edge estimation with independent set queries (1907.04381v1)

Published 9 Jul 2019 in cs.DS

Abstract: We study the problem of estimating the number of edges of an unknown, undirected graph $G=([n],E)$ with access to an independent set oracle. When queried about a subset $S\subseteq [n]$ of vertices the independent set oracle answers whether $S$ is an independent set in $G$ or not. Our first main result is an algorithm that computes a $(1+\epsilon)$-approximation of the number of edges $m$ of the graph using $\min(\sqrt{m},n / \sqrt{m})\cdot\textrm{poly}(\log n,1/\epsilon)$ independent set queries. This improves the upper bound of $\min(\sqrt{m},n2/m)\cdot\textrm{poly}(\log n,1/\epsilon)$ by Beame et al. \cite{BHRRS18}. Our second main result shows that ${\min(\sqrt{m},n/\sqrt{m}))/\textrm{polylog}(n)}$ independent set queries are necessary, thus establishing that our algorithm is optimal up to a factor of $\textrm{poly}(\log n, 1/\epsilon)$.

Citations (18)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.