Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

An Attention Mechanism for Musical Instrument Recognition (1907.04294v1)

Published 9 Jul 2019 in cs.IR, cs.SD, and eess.AS

Abstract: While the automatic recognition of musical instruments has seen significant progress, the task is still considered hard for music featuring multiple instruments as opposed to single instrument recordings. Datasets for polyphonic instrument recognition can be categorized into roughly two categories. Some, such as MedleyDB, have strong per-frame instrument activity annotations but are usually small in size. Other, larger datasets such as OpenMIC only have weak labels, i.e., instrument presence or absence is annotated only for long snippets of a song. We explore an attention mechanism for handling weakly labeled data for multi-label instrument recognition. Attention has been found to perform well for other tasks with weakly labeled data. We compare the proposed attention model to multiple models which include a baseline binary relevance random forest, recurrent neural network, and fully connected neural networks. Our results show that incorporating attention leads to an overall improvement in classification accuracy metrics across all 20 instruments in the OpenMIC dataset. We find that attention enables models to focus on (or `attend to') specific time segments in the audio relevant to each instrument label leading to interpretable results.

Citations (39)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.