Papers
Topics
Authors
Recent
2000 character limit reached

k-GANs: Ensemble of Generative Models with Semi-Discrete Optimal Transport (1907.04050v1)

Published 9 Jul 2019 in stat.ML and cs.LG

Abstract: Generative adversarial networks (GANs) are the state of the art in generative modeling. Unfortunately, most GAN methods are susceptible to mode collapse, meaning that they tend to capture only a subset of the modes of the true distribution. A possible way of dealing with this problem is to use an ensemble of GANs, where (ideally) each network models a single mode. In this paper, we introduce a principled method for training an ensemble of GANs using semi-discrete optimal transport theory. In our approach, each generative network models the transportation map between a point mass (Dirac measure) and the restriction of the data distribution on a tile of a Voronoi tessellation that is defined by the location of the point masses. We iteratively train the generative networks and the point masses until convergence. The resulting k-GANs algorithm has strong theoretical connection with the k-medoids algorithm. In our experiments, we show that our ensemble method consistently outperforms baseline GANs.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.