Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Deep Active Inference as Variational Policy Gradients (1907.03876v1)

Published 8 Jul 2019 in cs.LG and cs.NE

Abstract: Active Inference is a theory of action arising from neuroscience which casts action and planning as a bayesian inference problem to be solved by minimizing a single quantity - the variational free energy. Active Inference promises a unifying account of action and perception coupled with a biologically plausible process theory. Despite these potential advantages, current implementations of Active Inference can only handle small, discrete policy and state-spaces and typically require the environmental dynamics to be known. In this paper we propose a novel deep Active Inference algorithm which approximates key densities using deep neural networks as flexible function approximators, which enables Active Inference to scale to significantly larger and more complex tasks. We demonstrate our approach on a suite of OpenAIGym benchmark tasks and obtain performance comparable with common reinforcement learning baselines. Moreover, our algorithm shows similarities with maximum entropy reinforcement learning and the policy gradients algorithm, which reveals interesting connections between the Active Inference framework and reinforcement learning.

Citations (99)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)