Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Brain Tissues Segmentation on MR Perfusion Images Using CUSUM Filter for Boundary Pixels (1907.03865v1)

Published 8 Jul 2019 in eess.IV and cs.CV

Abstract: The fully automated and relatively accurate method of brain tissues segmentation on T2-weighted magnetic resonance perfusion images is proposed. Segmentation with this method provides a possibility to obtain perfusion region of interest on images with abnormal brain anatomy that is very important for perfusion analysis. In the proposed method the result is presented as a binary mask, which marks two regions: brain tissues pixels with unity values and skull, extracranial soft tissue and background pixels with zero values. The binary mask is produced based on the location of boundary between two studied regions. Each boundary point is detected with CUSUM filter as a change point for iteratively accumulated points at time of moving on a sinusoidal-like path along the boundary from one region to another. The evaluation results for 20 clinical cases showed that proposed segmentation method could significantly reduce the time and efforts required to obtain desirable results for perfusion region of interest detection on T2-weighted magnetic resonance perfusion images with abnormal brain anatomy.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.