Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Fully Convolutional Network for Removing DCT Artefacts From Images (1907.03798v2)

Published 8 Jul 2019 in eess.IV and cs.CV

Abstract: Image compression is one of the essential methods of image processing. Its most prominent advantage is the significant reduction of image size allowing for more efficient storage and transfer. However, lossy compression is associated with the loss of some image details in favor of reducing its size. In compressed images, the deficiencies are manifested by noticeable defects in the form of artifacts; the most common are block artifacts, ringing effect, or blur. In this article, we propose three models of fully convolutional networks with different configurations and examine their abilities in reducing compression artifacts. In the experiments, we research the extent to which the results are improved for models that will process the image in a similar way to the compression algorithm, and whether the initialization with predefined filters would allow for better image reconstruction than developed solely during learning.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.