Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Prediction of Soil Moisture Content Based On Satellite Data and Sequence-to-Sequence Networks (1907.03697v1)

Published 5 Jun 2019 in eess.IV, cs.CV, and cs.LG

Abstract: The main objective of this study is to combine remote sensing and machine learning to detect soil moisture content. Growing population and food consumption has led to the need to improve agricultural yield and to reduce wastage of natural resources. In this paper, we propose a neural network architecture, based on recent work by the research community, that can make a strong social impact and aid United Nations Sustainable Development Goal of Zero Hunger. The main aims here are to: improve efficiency of water usage; reduce dependence on irrigation; increase overall crop yield; minimise risk of crop loss due to drought and extreme weather conditions. We achieve this by applying satellite imagery, crop segmentation, soil classification and NDVI and soil moisture prediction on satellite data, ground truth and climate data records. By applying machine learning to sensor data and ground data, farm management systems can evolve into a real time AI enabled platform that can provide actionable recommendations and decision support tools to the farmers.

Citations (14)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.