Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-Invasive MGMT Status Prediction in GBM Cancer Using Magnetic Resonance Images (MRI) Radiomics Features: Univariate and Multivariate Machine Learning Radiogenomics Analysis (1907.03495v1)

Published 8 Jul 2019 in physics.med-ph, cs.LG, eess.IV, and q-bio.GN

Abstract: Background and aim: This study aimed to predict methylation status of the O-6 methyl guanine-DNA methyl transferase (MGMT) gene promoter status by using MRI radiomics features, as well as univariate and multivariate analysis. Material and Methods: Eighty-two patients who had a MGMT methylation status were include in this study. Tumor were manually segmented in the four regions of MR images, a) whole tumor, b) active/enhanced region, c) necrotic regions and d) edema regions (E). About seven thousand radiomics features were extracted for each patient. Feature selection and classifier were used to predict MGMT status through different machine learning algorithms. The area under the curve (AUC) of receiver operating characteristic (ROC) curve was used for model evaluations. Results: Regarding univariate analysis, the Inverse Variance feature from gray level co-occurrence matrix (GLCM) in Whole Tumor segment with 4.5 mm Sigma of Laplacian of Gaussian filter with AUC: 0.71 (p-value: 0.002) was found to be the best predictor. For multivariate analysis, the decision tree classifier with Select from Model feature selector and LOG filter in Edema region had the highest performance (AUC: 0.78), followed by Ada Boost classifier with Select from Model feature selector and LOG filter in Edema region (AUC: 0.74). Conclusion: This study showed that radiomics using machine learning algorithms is a feasible, noninvasive approach to predict MGMT methylation status in GBM cancer patients Keywords: Radiomics, Radiogenomics, GBM, MRI, MGMT

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Ghasem Hajianfar (7 papers)
  2. Isaac Shiri (11 papers)
  3. Hassan Maleki (4 papers)
  4. Niki Oveisi (4 papers)
  5. Abbass Haghparast (1 paper)
  6. Hamid Abdollahi (5 papers)
  7. Mehrdad Oveisi (8 papers)
Citations (47)

Summary

We haven't generated a summary for this paper yet.