Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

ReLU Networks as Surrogate Models in Mixed-Integer Linear Programs (1907.03140v3)

Published 6 Jul 2019 in math.OC and cs.LG

Abstract: We consider the embedding of piecewise-linear deep neural networks (ReLU networks) as surrogate models in mixed-integer linear programming (MILP) problems. A MILP formulation of ReLU networks has recently been applied by many authors to probe for various model properties subject to input bounds. The formulation is obtained by programming each ReLU operator with a binary variable and applying the big-M method. The efficiency of the formulation hinges on the tightness of the bounds defined by the big-M values. When ReLU networks are embedded in a larger optimization problem, the presence of output bounds can be exploited in bound tightening. To this end, we devise and study several bound tightening procedures that consider both input and output bounds. Our numerical results show that bound tightening may reduce solution times considerably, and that small-sized ReLU networks are suitable as surrogate models in mixed-integer linear programs.

Citations (123)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.