Papers
Topics
Authors
Recent
2000 character limit reached

NeuType: A Simple and Effective Neural Network Approach for Predicting Missing Entity Type Information in Knowledge Bases (1907.03007v1)

Published 5 Jul 2019 in cs.IR, cs.AI, and cs.CL

Abstract: Knowledge bases store information about the semantic types of entities, which can be utilized in a range of information access tasks. This information, however, is often incomplete, due to new entities emerging on a daily basis. We address the task of automatically assigning types to entities in a knowledge base from a type taxonomy. Specifically, we present two neural network architectures, which take short entity descriptions and, optionally, information about related entities as input. Using the DBpedia knowledge base for experimental evaluation, we demonstrate that these simple architectures yield significant improvements over the current state of the art.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.