Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

NeuType: A Simple and Effective Neural Network Approach for Predicting Missing Entity Type Information in Knowledge Bases (1907.03007v1)

Published 5 Jul 2019 in cs.IR, cs.AI, and cs.CL

Abstract: Knowledge bases store information about the semantic types of entities, which can be utilized in a range of information access tasks. This information, however, is often incomplete, due to new entities emerging on a daily basis. We address the task of automatically assigning types to entities in a knowledge base from a type taxonomy. Specifically, we present two neural network architectures, which take short entity descriptions and, optionally, information about related entities as input. Using the DBpedia knowledge base for experimental evaluation, we demonstrate that these simple architectures yield significant improvements over the current state of the art.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.