Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Deep Reinforcement Learning For Modeling Chit-Chat Dialog With Discrete Attributes (1907.02848v2)

Published 5 Jul 2019 in cs.LG and cs.CL

Abstract: Open domain dialog systems face the challenge of being repetitive and producing generic responses. In this paper, we demonstrate that by conditioning the response generation on interpretable discrete dialog attributes and composed attributes, it helps improve the model perplexity and results in diverse and interesting non-redundant responses. We propose to formulate the dialog attribute prediction as a reinforcement learning (RL) problem and use policy gradients methods to optimize utterance generation using long-term rewards. Unlike existing RL approaches which formulate the token prediction as a policy, our method reduces the complexity of the policy optimization by limiting the action space to dialog attributes, thereby making the policy optimization more practical and sample efficient. We demonstrate this with experimental and human evaluations.

Citations (33)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.