Papers
Topics
Authors
Recent
2000 character limit reached

A Pvalue-guided Anomaly Detection Approach Combining Multiple Heterogeneous Log Parser Algorithms on IIoT Systems (1907.02765v1)

Published 5 Jul 2019 in cs.CR

Abstract: Industrial Internet of Things (IIoT) is becoming an attack target of advanced persistent threat (APT). Currently, IIoT logs have not been effectively used for anomaly detection. In this paper, we use blockchain to prevent logs from being tampered with and propose a pvalue-guided anomaly detection approach. This approach uses statistical pvalues to combine multiple heterogeneous log parser algorithms. The weighted edit distance is selected as a score function to calculate the nonconformity score between a log and a predefined event. The pvalue is calculated based on the non-conformity scores which indicate how well a log matches an event. This approach is tested on a large number of real-world HDFS logs and IIoT logs. The experiment results show that abnormal events could be effectively recognized by our pvalue-guided approach.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.