Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Attention based Convolutional Recurrent Neural Network for Environmental Sound Classification (1907.02230v1)

Published 4 Jul 2019 in cs.SD, cs.LG, and eess.AS

Abstract: Environmental sound classification (ESC) is a challenging problem due to the complexity of sounds. The ESC performance is heavily dependent on the effectiveness of representative features extracted from the environmental sounds. However, ESC often suffers from the semantically irrelevant frames and silent frames. In order to deal with this, we employ a frame-level attention model to focus on the semantically relevant frames and salient frames. Specifically, we first propose an convolutional recurrent neural network to learn spectro-temporal features and temporal correlations. Then, we extend our convolutional RNN model with a frame-level attention mechanism to learn discriminative feature representations for ESC. Experiments were conducted on ESC-50 and ESC-10 datasets. Experimental results demonstrated the effectiveness of the proposed method and achieved the state-of-the-art performance in terms of classification accuracy.

Citations (106)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.