Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 174 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Adaptive Approximation and Generalization of Deep Neural Network with Intrinsic Dimensionality (1907.02177v3)

Published 4 Jul 2019 in stat.ML and cs.LG

Abstract: In this study, we prove that an intrinsic low dimensionality of covariates is the main factor that determines the performance of deep neural networks (DNNs). DNNs generally provide outstanding empirical performance. Hence, numerous studies have actively investigated the theoretical properties of DNNs to understand their underlying mechanisms. In particular, the behavior of DNNs in terms of high-dimensional data is one of the most critical questions. However, this issue has not been sufficiently investigated from the aspect of covariates, although high-dimensional data have practically low intrinsic dimensionality. In this study, we derive bounds for an approximation error and a generalization error regarding DNNs with intrinsically low dimensional covariates. We apply the notion of the Minkowski dimension and develop a novel proof technique. Consequently, we show that convergence rates of the errors by DNNs do not depend on the nominal high dimensionality of data, but on its lower intrinsic dimension. We further prove that the rate is optimal in the minimax sense. We identify an advantage of DNNs by showing that DNNs can handle a broader class of intrinsic low dimensional data than other adaptive estimators. Finally, we conduct a numerical simulation to validate the theoretical results.

Citations (38)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.