A Quantum Field Theory of Representation Learning (1907.02163v1)
Abstract: Continuous symmetries and their breaking play a prominent role in contemporary physics. Effective low-energy field theories around symmetry breaking states explain diverse phenomena such as superconductivity, magnetism, and the mass of nucleons. We show that such field theories can also be a useful tool in machine learning, in particular for loss functions with continuous symmetries that are spontaneously broken by random initializations. In this paper, we illuminate our earlier published work (Bamler & Mandt, 2018) on this topic more from the perspective of theoretical physics. We show that the analogies between superconductivity and symmetry breaking in temporal representation learning are rather deep, allowing us to formulate a gauge theory of `charged' embedding vectors in time series models. We show that making the loss function gauge invariant speeds up convergence in such models.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.