Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Quantum Field Theory of Representation Learning

Published 4 Jul 2019 in stat.ML, cond-mat.stat-mech, and cs.LG | (1907.02163v1)

Abstract: Continuous symmetries and their breaking play a prominent role in contemporary physics. Effective low-energy field theories around symmetry breaking states explain diverse phenomena such as superconductivity, magnetism, and the mass of nucleons. We show that such field theories can also be a useful tool in machine learning, in particular for loss functions with continuous symmetries that are spontaneously broken by random initializations. In this paper, we illuminate our earlier published work (Bamler & Mandt, 2018) on this topic more from the perspective of theoretical physics. We show that the analogies between superconductivity and symmetry breaking in temporal representation learning are rather deep, allowing us to formulate a gauge theory of `charged' embedding vectors in time series models. We show that making the loss function gauge invariant speeds up convergence in such models.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.