Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Variance Reduction for Matrix Games (1907.02056v2)

Published 3 Jul 2019 in math.OC, cs.DS, and cs.LG

Abstract: We present a randomized primal-dual algorithm that solves the problem $\min_{x} \max_{y} y\top A x$ to additive error $\epsilon$ in time $\mathrm{nnz}(A) + \sqrt{\mathrm{nnz}(A)n}/\epsilon$, for matrix $A$ with larger dimension $n$ and $\mathrm{nnz}(A)$ nonzero entries. This improves the best known exact gradient methods by a factor of $\sqrt{\mathrm{nnz}(A)/n}$ and is faster than fully stochastic gradient methods in the accurate and/or sparse regime $\epsilon \le \sqrt{n/\mathrm{nnz}(A)}$. Our results hold for $x,y$ in the simplex (matrix games, linear programming) and for $x$ in an $\ell_2$ ball and $y$ in the simplex (perceptron / SVM, minimum enclosing ball). Our algorithm combines Nemirovski's "conceptual prox-method" and a novel reduced-variance gradient estimator based on "sampling from the difference" between the current iterate and a reference point.

Citations (60)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.