Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Variance Reduction for Matrix Games (1907.02056v2)

Published 3 Jul 2019 in math.OC, cs.DS, and cs.LG

Abstract: We present a randomized primal-dual algorithm that solves the problem $\min_{x} \max_{y} y\top A x$ to additive error $\epsilon$ in time $\mathrm{nnz}(A) + \sqrt{\mathrm{nnz}(A)n}/\epsilon$, for matrix $A$ with larger dimension $n$ and $\mathrm{nnz}(A)$ nonzero entries. This improves the best known exact gradient methods by a factor of $\sqrt{\mathrm{nnz}(A)/n}$ and is faster than fully stochastic gradient methods in the accurate and/or sparse regime $\epsilon \le \sqrt{n/\mathrm{nnz}(A)}$. Our results hold for $x,y$ in the simplex (matrix games, linear programming) and for $x$ in an $\ell_2$ ball and $y$ in the simplex (perceptron / SVM, minimum enclosing ball). Our algorithm combines Nemirovski's "conceptual prox-method" and a novel reduced-variance gradient estimator based on "sampling from the difference" between the current iterate and a reference point.

Citations (60)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.