Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 174 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Numerical homogenization for nonlinear strongly monotone problems (1907.01883v3)

Published 3 Jul 2019 in math.NA and cs.NA

Abstract: In this work we introduce and analyze a new multiscale method for strongly nonlinear monotone equations in the spirit of the Localized Orthogonal Decomposition. A problem-adapted multiscale space is constructed by solving linear local fine-scale problems which is then used in a generalized finite element method. The linearity of the fine-scale problems allows their localization and, moreover, makes the method very efficient to use. The new method gives optimal a priori error estimates up to linearization errors. The results neither require structural assumptions on the coefficient such as periodicity or scale separation nor higher regularity of the solution. The effect of different linearization strategies is discussed in theory and practice. Several numerical examples including stationary Richards equation confirm the theory and underline the applicability of the method.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.