Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The Receptive Field as a Regularizer in Deep Convolutional Neural Networks for Acoustic Scene Classification (1907.01803v1)

Published 3 Jul 2019 in cs.LG, cs.SD, eess.AS, and stat.ML

Abstract: Convolutional Neural Networks (CNNs) have had great success in many machine vision as well as machine audition tasks. Many image recognition network architectures have consequently been adapted for audio processing tasks. However, despite some successes, the performance of many of these did not translate from the image to the audio domain. For example, very deep architectures such as ResNet and DenseNet, which significantly outperform VGG in image recognition, do not perform better in audio processing tasks such as Acoustic Scene Classification (ASC). In this paper, we investigate the reasons why such powerful architectures perform worse in ASC compared to simpler models (e.g., VGG). To this end, we analyse the receptive field (RF) of these CNNs and demonstrate the importance of the RF to the generalization capability of the models. Using our receptive field analysis, we adapt both ResNet and DenseNet, achieving state-of-the-art performance and eventually outperforming the VGG-based models. We introduce systematic ways of adapting the RF in CNNs, and present results on three data sets that show how changing the RF over the time and frequency dimensions affects a model's performance. Our experimental results show that very small or very large RFs can cause performance degradation, but deep models can be made to generalize well by carefully choosing an appropriate RF size within a certain range.

Citations (85)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.