Papers
Topics
Authors
Recent
2000 character limit reached

A Stable Boundary Integral Formulation of an Acoustic Wave Transmission Problem with Mixed Boundary Conditions (1907.01738v3)

Published 3 Jul 2019 in math.NA and cs.NA

Abstract: In this paper, we consider an acoustic wave transmission problem with mixed boundary conditions of Dirichlet, Neumann, and impedance type. The transmission interfaces may join the domain boundary in a general way independent of the location of the boundary conditions. We will derive a formulation as a \textit{direct}, \textit{space-time retarded boundary integral equation}, where both Cauchy data are kept as unknowns on the impedance part of the boundary. This requires the definition of single-trace spaces which incorporate homogeneous Dirichlet and Neumann conditions on the corresponding parts on the boundary. We prove the continuity and coercivity of the formulation by employing the technique of operational calculus in the Laplace domain.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.