Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

AMI-Net+: A Novel Multi-Instance Neural Network for Medical Diagnosis from Incomplete and Imbalanced Data (1907.01734v1)

Published 3 Jul 2019 in cs.LG and stat.ML

Abstract: In medical real-world study (RWS), how to fully utilize the fragmentary and scarce information in model training to generate the solid diagnosis results is a challenging task. In this work, we introduce a novel multi-instance neural network, AMI-Net+, to train and predict from the incomplete and extremely imbalanced data. It is more effective than the state-of-art method, AMI-Net. First, we also implement embedding, multi-head attention and gated attention-based multi-instance pooling to capture the relations of symptoms themselves and with the given disease. Besides, we propose var-ious improvements to AMI-Net, that the cross-entropy loss is replaced by focal loss and we propose a novel self-adaptive multi-instance pooling method on instance-level to obtain the bag representation. We validate the performance of AMI-Net+ on two real-world datasets, from two different medical domains. Results show that our approach outperforms other base-line models by a considerable margin.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.